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Abstract

Chronic low-grade systemic infl ammation is a feature of chronic diseases such 
as cardiovascular disease and type 2 diabetes. Regular exercise offers protection 
against all-cause mortality, primarily by protection against atherosclerosis and 
insulin resistance and there is evidence that physical training is effective as a 
treatment in patients with chronic heart diseases and type 2 diabetes.

Regular exercise induces anti-infl ammatory actions. During exercise, IL-6 
(interleukin-6) is produced by muscle fi bres. IL-6 stimulates the appearance in 
the circulation of other anti-infl ammatory cytokines such as IL-1ra (interleukin-1 
receptor antagonist) and IL-10 (interleukin-10) and inhibits the production of 
the pro-infl ammatory cytokine TNF-� (tumour necrosis factor-�). In addition, 
IL-6 enhances lipid turnover, stimulating lipolysis as well as fat oxidation. It 
is suggested that regular exercise induces suppression of TNF-� and thereby 
offers protection against TNF-�-induced insulin resistance. Recently, IL-6 
was introduced as the fi rst myokine, defi ned as a cytokine, that is produced 
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and released by contracting skeletal muscle fi bres, exerting its effects in other 
organs of the body. Myokines may be involved in mediating the benefi cial 
health effects against chronic diseases associated with low-grade infl ammation 
such as diabetes and cardiovascular diseases.

Introduction

Cardiovascular disease and type 2 diabetes are not only leading causes of death 
and illness in developed countries, but these chronic diseases are becoming the 
dominating health problem worldwide [1]. Regular exercise offers protection 
against all-cause mortality, primarily by protection against atherosclerosis and 
type 2 diabetes [2]. In addition, physical training is effective in the treatment of 
patients with ischaemic heart disease and type 2 diabetes [3].

Over the past decade, there has been an increasing focus on the role of 
infl ammation in the pathogenesis of atherosclerosis [4]. Further, infl am-
mation has been suggested to be a key factor in insulin resistance [5]. 
Low-grade chronic infl ammation is refl ected by increased systemic levels 
of some cytokines [6] as well as CRP (C-reactive protein). Several reports 
investigating various markers of infl ammation have confi rmed an association 
between low-grade systemic infl ammation on one hand and atherosclerosis 
and type 2 diabetes on the other [7]. Recent fi ndings demonstrate that physical 
activity induces an increase in the systemic levels of a number of cytokines 
with anti-infl ammatory properties [8]. Skeletal muscle has recently been 
identified as an endocrine organ, that produces and releases cytokines 
(termed myokines) [8–11].

Given that skeletal muscle is the largest organ in the human body, the 
discovery that contracting muscle is a cytokine producing organ opens a new 
paradigm: skeletal muscle is an endocrine organ that by contraction stimulates 
the production and release of cytokines, which can infl uence metabolism and 
modify cytokine production in tissue and organs (Figure 1).

This chapter reviews the evidence for physical training as a means to treat 
cardiovascular disease, insulin resistance and type 2 diabetes and discusses to 
what extent anti-infl ammatory activity induced by regular exercise may exert 
the benefi cial health effects in these disorders.

Clinical evidence for physical training in coronary heart 
disease, insulin resistance and type 2 diabetes

Coronary heart disease
The evidence for a beneficial effect of physical training in patients with 
coronary heart disease is strong. Physical training improves survival and 
is believed to have direct effects on the pathogenesis of the disease [3]. 
A meta-analysis was published in 2004 [12] based on 48 randomized controlled 
trials and 8940 patients. The patients were typically randomized at the time of 
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Figure 1. Skeletal muscle is an endocrine organ, that expresses and releases 
cytokines (also termed myokines) into the circulation and potentially infl uences 
metabolism and the infl ammatory status in tissue and organs

acute myocardial infarction or up to six weeks thereafter. The exercise training 
was predominantly aerobic, but varied considerably as regards frequency, 
intensity and duration. Exercise-based cardiac rehabilitation reduced 
all-cause mortality by 20% (OR 0.80; 95% CI 0.68–0.93). Exercise-based 
cardiac rehabilitation reduced cardiac mortality by 26% (OR 0.74; 95% 
CI 0.61–0.96). Exercise-based cardiac rehabilitation in addition reduced total 
cholesterol, triglyceride levels and systolic blood pressure. More patients in 
the exercise-based cardiac rehabilitation group ceased smoking (OR 0.64; 
95% CI 0.50–0.83). There was no effect on non-fatal myocardial infarction. 
In summary, exercise has pronounced health outcome effects in patients 
with cardiac diseases.

Insulin resistance
Few studies have examined the isolated effect of training on the prevention 
of diabetes in patients with impaired glucose tolerance, but there is good 
evidence for a benefi cial effect of combined physical training and dietary 
modification. Two randomized controlled trials including people with 
impaired glucose tolerance have found that lifestyle modifi cation protects 
against the development of type 2 diabetes. A Finnish trial randomized 
522 overweight middle-aged people with impaired glucose tolerance to 
a physical training combined with diet group or to a control group and 
followed them for 3.2 years [13]. The risk of type 2 diabetes was reduced by 
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58% in the intervention group. The effect was greatest in the patients who 
made the greatest lifestyle modifi cation. An American trial randomized 3234 
people with impaired glucose tolerance to either treatment with metformin, 
lifestyle modifi cation entailing dietary change and at least 150 min of physical 
exercise weekly, or placebo, and followed them for 2.8 years [14]. The lifestyle 
modifi cation reduced the risk of type 2 diabetes by 58%. The reduction was 
thus the same as in the Finnish trial [13], whereas treatment with metformin 
only reduced the risk of diabetes by 31%. It is not possible to determine the 
isolated effect of exercise in these trials [13,14], in which the intervention 
was combined exercise and diet. In summary, there is strong evidence that 
exercise protects against development of type 2 diabetes in patients with 
insulin resistance.

Type 2 diabetes
The benefi cial effect of training in patients with type 2 diabetes is very well 
documented, and there is international consensus that physical training 
comprises one of the three cornerstones of the treatment of diabetes together 
with diet and medicine. A meta-analysis published in 2001 examined the effect 
of at least eight weeks of physical training on glycaemic control [15]. The 
meta-analysis included 14 controlled clinical trials encompassing a total of 
504 patients. Twelve of the trials examined the effect of aerobic training [mean 
(S.D.); 3.4 (0.9) times/week for 18 (15) weeks], whilst two examined the effect 
of strength conditioning [mean (S.D.); 10 (0.7) exercises, 2.5 (0.7) sets, 13 (0.7) 
repetitions, 2.5 (0.4) times/week for 15 (10) weeks]. No differences could be 
identifi ed between the effect of aerobic training and strength conditioning. 
Neither could any dose – response effect be demonstrated relative to either the 
intensity or the duration of training. Post-intervention, HbA1c (haemoglobin 
A1c) was lower in the exercise groups than in the control groups (7.65% 
versus 8.31%; weighted mean difference, 0.66%; P<0.001). In comparison, 
intensive glycaemic control with metformin reduced HbA1c by 0.6%, whereas 
it reduced the risk of diabetes-related complications by 32% and the risk of 
diabetes-related mortality by 42% [16]. A meta-analysis encompassing 
95 783 non-diabetic individuals showed that cardiovascular morbidity is 
strongly correlated to fasting blood glucose [17]. The effect of physical training 
on HbA1c is thus clinically relevant and there is evidence to support exercise 
recommendations in patients with type 2 diabetes.

The players in chronic low-grade infl ammation and 
its link with chronic diseases

The local inflammatory response is accompanied by a systemic response 
known as the acute phase response [8]. This response includes the production 
of a large number of hepatocyte-derived acute phase proteins, such as CRP and 
can be mimicked by the injection of the cytokines TNF-� (tumour necrosis 
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factor-�), IL-1� (interleukin-1�) and IL-6 (interleukin-6) into laboratory 
animals or humans. The initial cytokines in the cytokine cascade are (named 
in order): TNF -�, IL-1�, IL-6, IL-1ra (interleukin-1 receptor antagonist) and 
sTNF-R (soluble TNF-�-receptors). IL-1ra inhibits IL-1 signal transduction, 
and sTNF-R represents the naturally occurring inhibitors of TNF-�. In 
response to an acute infection or trauma, the cytokines and cytokine inhibitors 
may increase 3- to 4-fold and decrease after recovery. Chronic low-grade 
systemic infl ammation has been introduced as a term for conditions in which 
a 2- to 3-fold increase in the systemic concentrations of TNF-�, IL-1, IL-6, 
IL-1ra, sTNF-R and CRP is refl ected. In the latter case, the stimuli for the 
cytokine production are not known, but the likely origin of TNF-� in chronic 
low-grade systemic infl ammation is mainly the adipose tissue.

The link between infl ammation, insulin resistance and 
atherosclerosis

Ageing is associated with increased resting plasma levels of TNF-�, IL-6, 
IL-1ra, sTNF-R and CRP [18]. High levels of TNF-� are associated with 
dementia and atherosclerosis [19]. Also, elevated levels of circulating IL-6 are 
associated with several disorders. Increased levels of both TNF-� and IL-6 
are observed in obese individuals, in smokers and in patients with type 2 
diabetes mellitus. Plasma concentrations of IL-6 have been shown to predict 
all-cause mortality as well as cardiovascular mortality. Furthermore, plasma 
concentrations of IL-6 and TNF-� have been shown to predict the risk of 
myocardial infarction in several studies, and the CRP level is shown to be a 
stronger predictor of cardiovascular events than the low density lipoprotein 
cholesterol level.

Mounting evidence suggests that TNF-� plays a direct role in the metabolic 
syndrome [20]. Patients with diabetes demonstrate high mRNA and protein 
expression of TNF-� in skeletal muscle and increased TNF-� levels in plasma 
and it is likely that adipose tissue, which produces TNF-�, is the main source 
of the circulating TNF-�. Mounting evidence points to an effect of TNF-� on 
insulin signalling. TNF-� impairs insulin-stimulated rates of glucose storage 
in cultured human muscle cells and impairs insulin mediated glucose uptake in 
rats. Obese mice with a gene knockout of TNF-� are protected from insulin 
resistance and inhibition of TNF-� with an anti-TNF-� antibody treatment 
improves the insulin sensitivity in the insulin resistance rat model. In vitro 
studies demonstrate that TNF-� has direct inhibitory effects on insulin signal-
ling. Recently, it was demonstrated that TNF-� infusion in healthy humans 
induces insulin resistance in skeletal muscle, without an effect on endogenous 
glucose production. TNF-� directly impaired glucose uptake and metabolism 
by altering insulin signal transduction. These data provide a direct molecular 
link between low-grade systemic infl ammation and insulin resistance [20]. It 
has also been proposed that TNF-� indirectly causes insulin resistance in vivo 
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by increasing the release of NEFAs (non-esterifi ed fatty acids) from adipose 
tissue. TNF-� increases lipolysis in human, rat and 3T3-L1 adipocytes. 
Recently, it was found that TNF-� had no effect on muscle fatty acid oxidation, 
but increased fatty acid incorporation into diacylglycerol, which may be involved 
in the development of TNF-�-induced insulin resistance in skeletal muscle.

Recent evidence suggests that TNF-� plays a key role in linking insulin 
resistance to vascular disease. Several downstream mediators and signalling 
pathways seem to provide the crosstalk between infl ammatory and metabolic 
signalling. These include the discovery of JNK (c-Jun N-terminal kinase) and I�K 
(I�B kinase) as critical regulators of insulin action activated by TNF-� [21]. In 
human TNF-� infusion studies, TNF-� increases phosphorylation of the p70 
S6 kinase, extracellular signal-regulated kinase-1/2 and JNK, concomitant with 
increased serine and reduced tyrosine phosphorylation of insulin receptor sub-
strate-1. These signalling effects are associated with impaired phosphorylation 
of Akt substrate 160, the most proximal step identifi ed in the insulin signalling 
cascade regulating GLUT4 translocation and glucose uptake [22] (Figure 2).

With regard to IL-6, its role in insulin resistance is highly controver-
sial. In humans, circulating IL-6 levels may or may not be associated with 
insulin resistance [23]. Infusion of recombinant human (rh) IL-6 into resting 
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Figure 2. TNF-� represents a molecular link between low-grade systemic infl ammation 
and the metabolic syndrome 
TNF-� infusion to humans increases phosphorylation of p70 S6 kinase, ERK-1/2 (extracellular 
signal-regulated kinase-1/2) and JNK, concomitant with increased serine and reduced tyrosine 
phosphorylation of IRS (insulin receptor substrate)-1. These signalling effects are associated with 
impaired phosphorylation of AS160 (Akt substrate 160), the most proximal step identifi ed in 
the insulin signalling cascade regulating GLUT4 translocation and glucose uptake. Thus excessive 
concentrations of TNF-� negatively regulate insulin signalling and whole-body glucose uptake 
in humans.
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healthy humans does not impair whole body, lower limb or subcutaneous 
adipose tissue glucose uptake or EGP (endogenous glucose production), 
although IL-6 contributes to the contraction-induced increase in EGP. When 
diabetes patients were given an rhIL-6 infusion, plasma concentrations of 
insulin decreased to levels comparable with that in age and BMI (body mass 
index)-matched healthy controls, indicating that the IL-6 enhanced insulin sen-
sitivity. In vitro studies demonstrate that IL-6 can induce insulin resistance in 
isolated 3T3-L1 adipocytes and in mice. However, the IL-6 dose applied in the 
latter studies was supraphysiological, and is therefore probably not relevant to 
human physiology. Interestingly, IL-6 knockout mice develop impaired glu-
cose tolerance that is reverted by IL-6 [24]. Thus accumulating data suggest 
that IL-6 enhances glucose uptake in myocytes.

AMPK (AMP-activated protein kinase) activity stimulates a variety of 
processes that increases ATP generation including fatty acid oxidation and 
glucose transport in skeletal muscle [25]. Incubation with IL-6 increases the 
phosphorylation of AMPK (an indicator of its activation) and that of its tar-
get molecule, ACC (acetyl-CoA carboxylase) in skeletal muscles. In addition, 
AMPK activity and ACC levels are very low in IL-6 knockout mice, suggest-
ing a role of IL-6 in the regulation of AMPK activity. These data suggest that 
IL-6 activation of AMPK is dependent on the presence of IL-6 [26].

A number of studies indicate that IL-6 enhances lipolysis [27–31], as well 
as fat oxidation [30]. Consistent with this idea, Wallenius et al. [24] demon-
strated that IL-6 defi cient mice developed mature-onset obesity and insulin 
resistance. In addition, when the mice were treated with IL-6, there was a 
signifi cant decrease in body fat mass in the IL-6 knockout, but not in the 
wild-type mice. To determine whether physiological concentrations of IL-6 
affected lipid metabolism, our group administered physiological concentra-
tions of rhIL-6 to healthy young and elderly humans as well as patients with 
type 2 diabetes [30,32]. The latter studies identifi ed IL-6 as a potent modulator 
of fat metabolism in humans, increasing lipolysis as well as fat oxidation with-
out causing hypertriacylglycerolaemia.

Of note, whereas it is known that both TNF-� and IL-6 induce lipolysis, 
only IL-6 appears to induce fat oxidation [23]. High levels of IL-6 and TNF-� 
in patients with the metabolic syndrome is associated with truncal fat mass 
and both TNF-� and IL-6 are produced in adipose tissue. Given the different 
biological profi les of TNF-� and IL-6 and given that TNF-� can trigger IL-6 
release, one theory holds that it is TNF-� derived from adipose tissue that 
actually is the ‘driver’ behind insulin resistance and cardiovascular diseases and 
that locally produced TNF-� causes increased systemic levels of IL-6.

The cytokine response to exercise

In sepsis and experimental models of sepsis, the cytokine cascade consists 
of (named in order): TNF-�, IL-1�, IL-6, IL-1ra, sTNF-R and IL-10 
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(interleukin-10) [33]. The first two cytokines in the cytokine cascade are 
TNF-� and IL-1�, which are produced locally. These cytokines are usually 
referred to as pro-inflammatory cytokines. TNF-� and IL-1� stimulate 
the production of IL-6, which has been classified as both a pro- and an 
anti-inflammatory cytokine. The cytokine response to exercise differs 
from that elicited by severe infections [34–37]. The fact that the classical 
pro-infl ammatory cytokines, TNF-� and IL-1�, in general do not increase 
with exercise indicates that the cytokine cascade induced by exercise markedly 
differs from the cytokine cascade induced by infections. Typically, IL-6 is 
the fi rst cytokine released into the circulation during exercise. The level of 
circulating IL-6 increases in an exponential fashion (up to 100-fold) in response 
to exercise, and declines in the post-exercise period [34–37] (Figure 3).

The circulating levels of well-known anti-infl ammatory cytokines and 
cytokine inhibitors such as IL-1ra and sTNF-R also increase after exercise.

Taken together, exercise provokes an increase primarily in IL-6, followed 
by an increase in IL-1ra and IL-10. The appearance of IL-6 in the circulation is 
by far the most marked and its appearance precedes that of the other cytokines. 
The IL-6 response to exercise has recently been reviewed [10,23,34–36]. A 
marked increase in circulating levels of IL-6 after exercise without muscle 
damage has been a remarkably consistent fi nding. Plasma IL-6 increases in an 
exponential fashion with exercise and is related to exercise intensity, duration, 
the mass of muscle recruited and one’s endurance capacity [10,34–36]. In 2000, 
Steensberg et al. [38] published the fi rst article demonstrating that most of the 
IL-6 seen in the circulation was likely to be derived from the contracting limb. 
Using a single-legged kicking model and measuring arteriovenous difference 
and blood fl ow across the contracting and non-contracting limb, it was clear 
that net release from the contracting limb was marked. This study has been 
followed by many others that confi rmed the net limb release of IL-6 is marked 
and that the IL-6 mRNA levels in biopsy samples taken from the contracting 
limb rapidly increases above baseline values. However, it was only recently 
confi rmed that the myocytes themselves produce IL-6. A qualitative elevation 
in IL-6 protein measured in muscle cells within human muscle biopsy sections 
using immunohistochemistry has been reported. In a follow-up study, however, 
defi nitive evidence was found that myocytes themselves are a major source of 
contraction-induced IL-6. In addition to immunohistochemistry techniques, in 
situ hybridization assays were performed on muscle cross-sections before and 
after exercise. Consistent with the immunohistochemical data, IL-6 mRNA was 
almost absent in cross-sections before exercise, but prominent after contraction.

The cytokine IL-6 exerts it actions via the IL-6R (IL-6 receptor) in con-
junction with the ubiquitously expressed gp130 receptor. IL-6 is regulated in an 
autocrine fashion [39]. In accordance, acute exercise induces IL-6R expression 
in the post-exercise period after exercise suggesting a post-exercise-sensitizing 
mechanism to IL-6. We further demonstrated, that after a ten week training 
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Figure 3. In sepsis, the cytokine cascade within the fi rst few hours consists of TNF-�, 
IL-6, IL-1ra, sTNF-R and IL-10 
The cytokine response to exercise does not include TNF-� but does show a marked increase 
in IL-6, which is followed by IL-1ra, sTNF-R and IL-10. Increased CRP levels do not appear until 
8–12 h later.

period, IL-6R mRNA production was increased in skeletal muscle, suggesting 
a sensitization of skeletal muscle to IL-6 at rest.

Studies have reported that carbohydrate ingestion attenuates elevations 
in plasma IL-6 during both running and cycling. Low muscle glycogen con-
centration further enhances IL-6 mRNA and the transcription rate for IL-6. 
Therefore, pre-exercise intramuscular glycogen content appears to be an 
important stimulus for IL-6 gene transcription. It appears that muscle-derived 
IL-6 acts as an energy sensor.

Most studies of muscle-derived IL-6 have been performed in healthy 
young volunteers, exercised at high intensities. However, the clinical 
relevance of muscle-derived IL-6 is supported by the findings that even 
moderate exercise has major effects on muscle-derived IL-6. Young healthy 
individuals performed 3 h of dynamic two-legged knee-extensor exercise at 
50% of their individual maximal power output. This exercise induced an only 
moderate increase in heart rate (from 113 to 122 beats·min−1), but induced 
a 16-fold increase in IL-6 mRNA, a 20-fold increase in plasma IL-6 and a 
marked IL-6 release from working muscle. When the same model was applied 
in elderly healthy untrained subjects, even higher amounts of IL-6 were 
released from working muscle during exercise at the same relative intensity.

Studies have demonstrated that monocytes are not major contributors to 
the IL-6 response to exercise. However, small amounts of IL-6 are also pro-
duced and released from adipose tissue, and studies indicate that also the brain 
and peritendon tissue may release IL-6 in response to exercise. Although we 
have yet to determine the precise biological action of muscle-derived IL-6, 
accumulating data support the hypothesis that the role of IL-6 released from 
contracting muscle during exercise is to act in a hormone-like manner to mobi-
lize extracellular substrates and/or augment substrate delivery during exercise. 
In addition, IL-6 has important anti-infl ammatory effects.
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The anti-infl ammatory effects of IL-6

A couple of studies suggest that IL-6 may exert inhibitory effects on TNF-� [8]. 
IL-6 inhibits lipopolysaccharide-induced TNF-� production both in cultured 
human monocytes and in the human monocytic line U937. Furthermore, levels 
of TNF-� are markedly elevated in anti-IL-6-treated mice and in IL-6 defi cient 
knockout mice, indicating that circulating IL-6 is involved in the regulation of 
TNF-� levels. In addition, rhIL-6 infusion inhibits the endotoxin-induced 
increase in circulating levels of TNF-� in healthy humans. Lastly, IL-6 
stimulates the release of soluble TNF-� receptors, but not IL-1� and TNF-�, 
and appears to be the primary inducer of the hepatocyte derived acute-phase 
proteins, many of which have anti-infl ammatory properties.

The anti-infl ammatory effects of IL-6 are also demonstrated by the fact that 
IL-6 stimulates the production of IL-1ra and IL-10. The appearance of IL-10 
and IL-1ra in the circulation following exercise also contributes to mediating 
the anti-inflammatory effects of exercise. IL-10 inhibits the production of 
IL-1�, IL-1� and TNF-� as well as the production of chemokines, including 
IL-8 and macrophage inflammatory protein-� from lipopolysaccharide-
activated human monocytes. These cytokines and chemokines play a critical 
role in the activation of granulocytes, monocytes/macrophages and lym-
phocytes and in their recruitment to the sites of infl ammation. Whereas IL-10 
infl uences multiple cytokines, the biological role of IL-1ra is to inhibit signal 
transduction through the IL-1 receptor complex.

The anti-infl ammatory effects of acute exercise and 
regular training

An association between physical inactivity and low-grade systemic 
inflammation has been demonstrated in cross-sectional studies including 
healthy younger individuals, elderly people, as well as in patients with 
intermittent claudication [40]. These data, however, do not provide any 
information with regard to a possible causal relationship. Longitudinal studies 
show that regular training induces a reduction in CRP levels and suggest that 
physical activity may suppress systemic low-grade infl ammation. To study 
whether acute exercise induces a true anti-infl ammatory response, a model of 
‘low grade infl ammation’ was established in which we injected a low dose of 
Escherichia coli endotoxin to healthy volunteers, who had been randomized 
to either rest or exercise prior to endotoxin administration. In resting subjects, 
endotoxin induced a 2- to 3-fold increase in circulating levels of TNF-�. In 
contrast, when the subjects performed 3 h of ergometer cycling and received 
the endotoxin bolus at 2.5 h, the TNF-� response was totally blunted.

Following exercise, the high circulating levels of IL-6 are followed by an 
increase in IL-1ra and IL-10, and the latter two anti-infl ammatory cytokines 
can be induced by IL-6. Therefore, IL-6 induces an anti-infl ammatory envi-
ronment by inducing the production of IL-1ra and IL-10, but it also inhibits 
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TNF-� production as suggested by in vitro and animal studies. In addition, 
rhIL-6 infusion inhibited the endotoxin-induced increase in plasma TNF-� in 
humans. The possibility exists that with regular exercise, the anti-infl amma-
tory effects of an acute bout of exercise will protect against chronic systemic 
low-grade infl ammation, but such a link between the acute effects of exercise 
and the long-term benefi ts has not yet been proven. Given that the athero-
sclerotic process is characterized by infl ammation, one alternative explanation 
would be that regular exercise, which offers protection against atherosclerosis, 
indirectly offers protection against vascular infl ammation and hence systemic 
low-grade infl ammation.

Conclusion

The long-term effect of exercise on the progression of disease may be ascribed 
to the anti-infl ammatory response elicited by an acute bout of exercise, which 
in part is mediated by muscle-derived IL-6. These anti-infl ammatory effects 
of exercise may offer protection against TNF-induced insulin resistance. It is 
suggested that muscle contraction-induced factors, so-called myokines, may be 
involved in mediating the health benefi ts of exercise and play important roles 
in the protection against diseases associated with low-grade infl ammation such 
as cardiovascular diseases and type 2 diabetes.

Summary

• Low-grade chronic systemic infl ammation accompanies chronic diseases 
such as cardiovascular disease and type 2 diabetes.

• Regular exercise induces an anti-infl ammatory response.
• During exercise, skeletal muscle releases IL-6.
• IL-6 has anti-inflammatory actions and modulates glucose and 

lipid metabolism.
• Muscle-derived cytokines, termed myokines, are likely to mediate the 

health benefi ts against chronic diseases.
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