CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Drumming

Directional vibration sensing in the termite Macrotermes natalensis📎

Written by CYBERMED LIFE NEWS
Attachments:
Download this file (Directional vibration sensing in the termite Macrotermes natalensis..pdf)Directional vibration sensing in the termite Macrotermes natalensis..pdf[Directional vibration sensing in the termite Macrotermes natalensis.]589 kB
facebook Share on Facebook
Abstract Title:

Directional vibration sensing in the termite Macrotermes natalensis.

Abstract Source:

J Exp Biol. 2014 Jul 15 ;217(Pt 14):2526-30. PMID: 25031457

Abstract Author(s):

Felix A Hager, Wolfgang H Kirchner

Article Affiliation:

Felix A Hager

Abstract:

Although several behavioural studies demonstrate the ability of insects to localise the source of vibrations, it is still unclear how insects are able to perceive directional information from vibratory signals on solid substrates, because time-of-arrival and amplitude difference between receptory structures are thought to be too small to be processed by insect nervous systems. The termite Macrotermes natalensis communicates using vibrational drumming signals transmitted along subterranean galleries. When soldiers are attacked by predators, they tend to drum with their heads against the substrate and create a pulsed vibration. Workers respond by a fast retreat into the nest. Soldiers in the vicinity start to drum themselves, leading to an amplification and propagation of the signal. Here we show that M. natalensis makes use of a directional vibration sensing in the context of colony defence. In the field, soldiers are recruited towards the source of the signal. In arena experiments on natural nest material, soldiers are able to localise the source of vibration. Using two movable platforms allowing us to vibrate the legs of the left and right sides of the body with a time delay, we show that the difference in time-of-arrival is the directional cue used for orientation. Delays as short as 0.2 ms are sufficient to be detected. Soldiers show a significant positive tropotaxis to the platform stimulated earlier, demonstrating for the first time perception of time-of-arrival delays and vibrotropotaxis on solid substrates in insects.


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.