CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Laser Treatment - Low-Level

Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. 📎

Written by CYBERMED LIFE NEWS
Attachments:
Download this file (Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells - in vitro study..pdf)Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells - in vitro study..pdf[Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study.]828 kB
facebook Share on Facebook
Abstract Title:

Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study.

Abstract Source:

Lasers Med Sci. 2017 Nov 7. Epub 2017 Nov 7. PMID: 29116611

Abstract Author(s):

Ji-Hua Lee, Min-Hsuan Chiang, Ping-Ho Chen, Mei-Ling Ho, Huey-Er Lee, Yan-Hsiung Wang

Article Affiliation:

Ji-Hua Lee

Abstract:

Periodontal disease is a chronic inflammatory disease that is commonly treated with surgical and nonsurgical techniques. However, both approaches have limitations. Low-level laser therapy (LLLT) has been widely applied in reducing inflammatory reactions, and research indicates that LLLT induces an anti-inflammatory effect that may enhance periodontal disease therapy. The purpose of this study was to investigate the anti-inflammatory effect of LLLT on human periodontal ligament cells (hPDLCs) in an inflammatory environment and aimed to determine the possible mechanism of action. Cells were cultured and treated with or without lipopolysaccharide (LPS) from Porphryromonas gingivalis or Escherichia coli, followed by irradiation with a gallium-aluminum-arsenide (GaAlAs) laser (660 nm) at an energy density of 8 J/cm2. Quantitative real-time polymerase chain reactions were used to assess the expression of pro-inflammatory genes, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8. The dual-luciferase reporter assay was used to examine nuclear factor-κB (NF-κB) transcriptional activity. An enzyme-linked immunosorbent assay was used to monitor the concentration of intracellular cyclic adenosine monophosphate (cAMP). Both LPS treatments significantly induced the mRNA expression of pro-inflammatory cytokines. However, LLLT inhibited the LPS-induced pro-inflammatory cytokine expression and elevated intracellular levels of cAMP. The LLLT inhibitory effect may function by downregulating NF-κB transcriptional activity and by increasing the intracellular levels of cAMP. LLLT might inhibit LPS-induced inflammation in hPDLCs through cAMP/NF-κB regulation. These results should be further studied to improve periodontal therapy.


We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.