CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Acetylcholinesterase inhibitor (xenobiotic)

  • Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    Abstract Title:

    Ascorbic acid ameliorates behavioural deficits and neuropathological alterations in rat model of Alzheimer's disease.

    Abstract Source:

    Environ Toxicol Pharmacol. 2017 Feb 6 ;50:200-211. Epub 2017 Feb 6. PMID: 28192749

    Abstract Author(s):

    Olayemi Joseph Olajide, Emmanuel Olusola Yawson, Ismail Temitayo Gbadamosi, Tolulope Timothy Arogundade, Ezra Lambe, Kosisochukwu Obasi, Ismail Tayo Lawal, Abdulmumin Ibrahim, Kehinde Yomi Ogunrinola

    Article Affiliation:

    Olayemi Joseph Olajide

    Abstract:

    Exploring the links between neural pathobiology and behavioural deficits in Alzheimer's disease (AD), and investigating substances with known therapeutic advantages over subcellular mechanisms underlying these dysfunctions could advance the development of potent therapeutic molecules for AD treatment. Here we investigated the efficacy of ascorbic acid (AA) in reversing aluminium chloride (AlCl3)-induced behavioural deficits and neurotoxic cascades within prefrontal cortex (PFC) and hippocampus of rats. A group of rats administered oral AlCl3 (100mg/kg) daily for 15days showed degenerative changes characterised by significant weight loss, reduced exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety during behavioural assessments compared to control. Subsequent analysis showed that oxidative impairment-indicated by depleted superoxide dismutase and lipid peroxidation (related to glutathione-S-transferase activity), cholinergic deficits seen by increased neural acetylcholinesterase (AChE) expression and elevated lactate dehydrogenase underlie behavioural alterations. Furthermore, evidences of proteolysis were seen by reduced Nissl profiles in neuronal axons and dendrites which correspond to apoptotic changes observed in H&E staining of PFC and hippocampal sections. Interestingly, AA (100mg/kg daily for 15days) significantly attenuated behavioural deficits in rats through inhibition of molecular and cellular stressor proteins activated by AlCl3. Our results showed that the primary mechanisms underlying AA therapeutic advantages relates closely with its abilities to scavenge free radicals, prevent membrane lipid peroxidation, modulate neuronal bioenergetics, act as AChE inhibitor and through its anti-proteolytic properties. These findings suggest that supplementing endogenous AA capacity through its pharmacological intake may inhibit progression of AD-related neurodegenerative processes and behavioural alterations.

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.