CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Apoptotic

  • Inhibitory effects of mild hyperthermia plus docetaxel therapy on ER(+/-) breast cancer cells and action mechanisms.

    facebook Share on Facebook
    Abstract Title:

    Inhibitory effects of mild hyperthermia plus docetaxel therapy on ER(+/-) breast cancer cells and action mechanisms.

    Abstract Source:

    J Huazhong Univ Sci Technolog Med Sci. 2013 Dec ;33(6):870-6. Epub 2013 Dec 13. PMID: 24337851

    Abstract Author(s):

    Feng Lv, Yang Yu, Bin Zhang, Dong Liang, Zhao-ming Li, Wei You

    Article Affiliation:

    Feng Lv

    Abstract:

    The purpose of this study was to verify that a combination of mild hyperthermia and docetaxel chemotherapy produces synergistic antitumor effects and to explore the action mechanisms of this treatment approach. The effects of docetaxel on the proliferation of cells from the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 and the ER-negative human breast cancer cell line MDA-MB-453 were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and effective experimental concentrations of docetaxel were determined. The effects of mild hyperthermia plus docetaxel therapy on apoptosis rate in the MCF-7 and MDA-MB-453 human breast cancer cell lines were analyzed by using flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The effects of these combined treatments on cell cycle progression in the MCF-7 and MDA-MB-453 human breast cancer cell lines were examined by using flow cytometry. The effects of these combined treatments on the expression of apoptosis-related proteins and proteins in the mitogen-activated protein kinase (MAPK) pathways were analyzed by using Western blotting. The effects of these combined treatments on the expression of the heat shock protein 70 (HSP70) and the multi-drug resistance (MDR) gene product P-glycoprotein (Pgp) were examined by using Western blotting. The results showed that the half-maximal inhibitory concentration (IC50) of docetaxel for MCF-7 and MDA-MB-453 cells was 19.57±1.12 and 21.64±2.31 μmol/L respectively. Mild hyperthermia with docetaxel therapy could increase apoptosis rate in the MCF-7 and MDA-MB-453 cells. Apoptosis rate in MCF-7 and MDA-MB-453 cells was increased from (23.66±3.59)% and (18.51±3.17)% in docetaxel treatment group to (47.12±6.73)% and(55.16±7.42)% in mild hyperthermia plus docetaxel group, indicating that the mild hyperthermia and docetaxel therapeutic approaches exhibited significant synergistic antitumor effects. Treatments of mild hyperthermia plus docetaxel induced G2/M cell cycle arrest in the MCF-7 and MDA-MB-453 cells. Western blotting demonstrated that proteins in the MAPK pathway were expressed at higher levels in docetaxel-treated cells following mild hypothermia than those in cells treated with docetaxel alone. As compared with blank control group, cells from the mild hyperthermia plus docetaxel group exhibitedsignificantly decreased B-cell lymphoma 2 (Bcl-2) protein expression but slightly increased Bcl-2-associated X protein (Bax) expression. Western blotting results revealed that HSP70 and Pgp expression levels were significantly increased following mild hypothermia. It was concluded that treatments of mild hyperthermia plus docetaxel inhibited the proliferation of human breast cancer cells, promoted apoptosis of breast cancer cells, and produced synergistic antitumor effects.

  • Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil's monounsaturated fatty acid oleic acid (18:1n-9).

    facebook Share on Facebook
    Abstract Title:

    Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil's monounsaturated fatty acid oleic acid (18:1n-9).

    Abstract Source:

    Curr Pharm Biotechnol. 2006 Dec;7(6):495-502. PMID: 17168666

    Abstract Author(s):

    Javier A Menendez, Ruth Lupu

    Article Affiliation:

    Fundació d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Girona, Catalonia, Spain. This email address is being protected from spambots. You need JavaScript enabled to view it.

    Abstract:

    The final proof about the specific mechanisms by which the different components of olive oil, the principal source of fat in a typical "Mediterranean diet", exert their potential protective effects on the promotion and progression of several human cancers requires further investigations. A recent discovery that dietary fatty acids can interact with the human genome by regulating the amount and/or activity of transcription factors has opened a whole new line of research aimed to molecularly corroborate the ant-cancer benefits of the olive oil-based Mediterranean diet and the underlying mechanisms. Our most recent findings reveal that oleic acid (OA; 18:1n-9), the main olive oil's monounsaturated fatty acid, can suppress the overexpression of HER2 (erbB-2), a well-characterized oncogene playing a key role in the etiology, invasive progression and metastasis in several human cancers. First, exogenous supplementation with physiological concentrations of OA significantly down-regulates HER2-coded p185(Her-2/neu) oncoprotein in human cancer cells naturally harboring amplification of the HER gene. Second, OA exposure specifically represses the transcriptional activity of the human HER2 gene promoter in tumor-derived cell lines naturally exhibiting HER2 gene amplification and p185(Her-2/neu) protein overexpression but not in cancer cells expressing physiological levels of HER2. Third, OA treatment induces the up-regulation of the Ets protein PEA3 (a transcriptional repressor of the HER2 gene promoter) solely in cancer cells naturally displaying HER2 gene amplification. Fourth, HER2 gene promoter bearing a PEA3 site-mutated sequence cannot be negatively regulated by OA, while treatment with OA fails to repress the expression of a human full-length HER2 cDNA controlled by a SV40 viral promoter. Fifth, OA-induced inhibition of HER2 promoter activity does not occur if HER2 gene-amplified cancer cells do no concomitantly exhibit high levels of Fatty Acid Synthase (FASN; Oncogenic antigen-519) as specific depletion of FASN, which itself similarly suppresses HER2 overexpression by inducing PEA3-dependent repression of HER2 gene promoter, strongly antagonizes the inhibitory effects of OA on HER2 gene promoter activity. Considering that OA treatment efficiently blocks FASN activity and down-regulates FASN protein expression, it is reasonable to suggest that an accumulation of supra-physiological concentrations of the FASN substrate malonyl-CoA, due to its reduced utilization by FASN in the presence of exogenous OA, appears to act as an indicator of "cell fuel" availability capable to suppress HER2 expression via formation of inhibitory "PEA3 protein-PEA3 DNA binding site" complexes on the endogenous HER2 promoter. Indeed, malonyl-CoA on its own dramatically decreases HER2 promoter activity, while OA or malonyl-CoA similarly up-regulates PEA3 gene promoter activity. This previously unrecognized ability of OA to directly affect the expression of a cluster of interrelated human cancer genes (i.e., HER2, FASN and PEA3) should open a new line of research aimed to explore the anti-cancer effects of OA. Certainly, an appropriate dietary intervention reproducing this prominent anti-oncogenic feature of the "Mediterranean diet" must be carried out in animal models and human pilot studies in the future. Only then we will know whether the old "Mediterranean dietary traditions" will become a new molecular approach in the management of cancer disease.

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.