CYBERMED LIFE - ORGANIC  & NATURAL LIVING

Advanced Glycation End products (AGE)

  • Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes📎

    Abstract Title:

    Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes.

    Abstract Source:

    Diabetes Care. 2006 Sep;29(9):2064-71. PMID: 16936154

    Abstract Author(s):

    Alin Stirban, Monica Negrean, Bernd Stratmann, Thomas Gawlowski, Tina Horstmann, Christian Götting, Knut Kleesiek, Michaela Mueller-Roesel, Theodor Koschinsky, Jaime Uribarri, Helen Vlassara, Diethelm Tschoepe

    Abstract:

    OBJECTIVE: Diabetes is characterized by marked postprandial endothelial dysfunction induced by hyperglycemia, hypertriglyceridemia, advanced glycation end products (AGEs), and dicarbonyls (e.g., methylglyoxal [MG]). In vitro hyperglycemia-induced MG formation and endothelial dysfunction could be blocked by benfotiamine, but in vivo effects of benfotiamine on postprandial endothelial dysfunction and MG synthesis have not been investigated in humans until now. RESEARCH DESIGN AND METHODS: Thirteen people with type 2 diabetes were given a heat-processed test meal with a high AGE content (HAGE; 15.100 AGE kU, 580 kcal, 54 g protein, 17 g lipids, and 48 g carbohydrates) before and after a 3-day therapy with benfotiamine (1,050 mg/day). Macrovascular flow-mediated dilatation (FMD) and microvascular reactive hyperemia, along with serum markers of endothelial disfunction (E-selectin, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), oxidative stress, AGE, and MG were measured during both test meal days after an overnight fast and then at 2, 4, and 6 h postprandially. RESULTS: The HAGE induced a maximum reactive hyperemia decrease of -60.0% after 2 h and a maximum FMD impairment of -35.1% after 4 h, without affecting endothelium-independent vasodilatation. The effects of HAGE on both FMD and reactive hyperemia were completely prevented by benfotiamine. Serum markers of endothelial dysfunction and oxidative stress, as well as AGE, increased after HAGE. These effects were significantly reduced by benfotiamine. CONCLUSIONS: Our study confirms micro- and macrovascular endothelial dysfunction accompanied by increased oxidative stress following a real-life, heat-processed, AGE-rich meal in individuals with type 2 diabetes and suggests benfotiamine as a potential treatment.

  • Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts.

    Abstract Title:

    Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts.

    Abstract Source:

    J Psychiatry Neurosci. 2001 May;26(3):221-8. PMID: 18284204

    Abstract Author(s):

    Xiaofang Peng, Ka-Wing Cheng, Jinyu Ma, Bo Chen, Chi-Tang Ho, Clive Lo, Feng Chen, Mingfu Wang

    Abstract:

    Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. In this study, the inhibitory effect of cinnamon bark on the formation of advanced glycation endproducts (AGEs) was investigated in a bovine serum albumin (BSA)-glucose model. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers were identified from the subfractions of aqueous cinnamon extract. These compounds showed significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal (MGO), an intermediate reactive carbonyl of AGE formation. Preliminary study on the reaction between MGO and procyanidin B2 revealed that MGO-procyanidin B2 adducts are primary products which are supposed to be stereoisomers. This is the first report that proanthocyanidins can effectively scavenge reactive carbonyl species and thus inhibit the formation of AGEs. As proanthocyanidins behave in a similar fashion as aminoguanidine (AG), the first AGE inhibitor explored in clinical trials, they show great potential to be developed as agents to alleviate diabetic complications.

  • Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA.

    Abstract Title:

    Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA.

    Abstract Source:

    Food Funct. 2015 Sep 3. Epub 2015 Sep 3. PMID: 26333284

    Abstract Author(s):

    Seong-Min Kim, So-Mang Lim, Jeong-Ah Yoo, Moon-Jea Woo, Kyung-Hyun Cho

    Article Affiliation:

    Seong-Min Kim

    Abstract:

    Background Although the health effects of vitamin C are well known, its physiological effect on serum lipoproteins and microRNA still remain to be investigated, especially daily consumption of a high dosage. Objectives To investigate the physiological effect of vitamin C on serum lipoprotein metabolism in terms of its anti-oxidant and anti-glycation activities, and gene expression via microRNA regulation. Methods We analyzed blood parameters and lipoprotein parameters in young subjects (n = 46, 22± 2 years old) including smokers who consumed a high dose of vitamin C (1250 mg) daily for 8 weeks. Results Antioxidant activity of serum was enhanced with the elevation of Vit C content in plasma during 8 weeks consumption. In the LDL fraction, the apo-B48 band disappeared at 8 weeks post-consumption in all subjects. In the HDL fraction, apoA-I expression was enhanced by 20% at 8 weeks, especially in male smokers. In the lipoprotein fraction, all subjects showed significantly reduced contents of advanced glycated end products and reactive oxygen species (ROS). Triglyceride (TG) contents in each LDL and HDL fraction were significantly reduced in all groups following the Vit C consumption, suggesting that the lipoprotein was changed to be more anti-inflammatory and atherogenic properties. Phagocytosis of LDL, which was purified from each individual, into macrophages was significantly reduced at 8-weeks post-consumption of vitamin C. Anti-inflammatory and anti-senescence effects of HDL from all subjects were enhanced after the 8-weeks consumption. The expression level of microRNA 155 in HDL3 was reduced by 49% and 75% in non-smokers and smokers, respectively. Conclusion The daily consumption of a high dose of vitamin C for 8 weeks resulted in enhanced anti-senescence and anti-atherosclerotic effects via an improvement of lipoprotein parameters and microRNA expression through anti-oxidation and anti-glycation, especially in smokers.

  • Effect of Tai Chi exercise on DNA damage, antioxidant enzymes, and oxidative stress in middle-age adults.

    facebook Share on Facebook
    Abstract Title:

    Effect of Tai Chi exercise on DNA damage, antioxidant enzymes, and oxidative stress in middle-age adults.

    Abstract Source:

    J Phys Act Health. 2009 Jan;6(1):43-54. PMID: 19211957

    Abstract Author(s):

    J A Goon, A H Noor Aini, M Musalmah, M Y Yasmin Anum, W M Wan Nazaimoon, W Z Wan Ngah

    Article Affiliation:

    Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.

    Abstract:

    BACKGROUND:The biochemical mechanisms involving oxidative stress to explain the relationship between exercise and healthy aging are still unclear.

    METHODS:Tai Chi participants and matched sedentary volunteers age 45 and above were enrolled. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities; levels of DNA damage using the comet assay; and malondialdehyde (MDA) and advanced glycation end products (AGE) were determined at 0, 6, and 12 months.

    RESULTS:Tai Chi subjects had decreased normal and increased mildly damaged DNA with elevated GPx activity after 6 months (n=25). Plasma MDA and AGE concentrations decreased significantly after 12 months (n=15) accompanied by increased SOD activity. This may be attributed to the hormesis effect, whereby mild induction of oxidative stress at the first 6 months of exercise resulted in stimulation of antioxidant defenses. These parameters were unchanged in the sedentary subjects in the first 6 months (n=27) except for elevated SOD activity. After 12 months, the sedentary subjects (n=17) had decreased normal DNA and increased severely damaged DNA with unaltered MDA and AGE levels while SOD and GPx activities were significantly elevated.

    CONCLUSION:Regular Tai Chi exercise stimulated endogenous antioxidant enzymes and reduced oxidative damage markers.

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.